

A decade of Australia – Korea R&D collaboration in energy

Professor Eric F May

CEO

44th AKBC – KABC Joint Meeting

8 September 2023

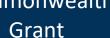
FUTURE ENERGY EXPORTS Cooperative Research Centre

Develop decarbonisation technologies for gas & LNG production

Help establish use & export of clean hydrogen

36 Participants in 2023

Australian and Global Companies



\$40M Commonwealth

Government, Regulatory & Peak Bodies

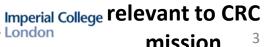
International Collaborators

\$38M

Participan t Cash

Australian Research Capabilities

Curtin University

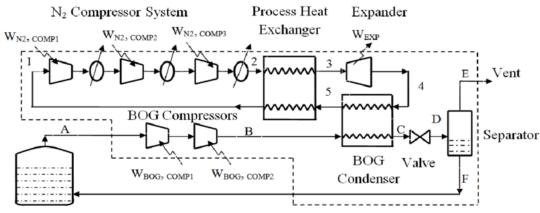


Also work with 3rd parties on projects

A decade of R&D collaboration

Since 2013

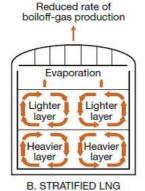
- 6 trips to Korea, 5 to Australia
- 5 projects funded by ARC &/or Heavy industry (Korea & Japan)
- 7 Korean students or guest researchers worked at UWA
- Unique experimental & modelling facilities developed
- Offshore & subsea engineering
- LNG production & shipping
- Next generation refrigerants

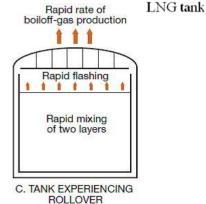


Industry Challenge:

FUTURE ENERGY EXPORTS

I NG Roil-off Gas Handling




Normal rate of boiloff-gas production

Evaporation

Convection cell

A. HOMOGENEOUS LNG

How big should the on-board BOG compressors be? Over-design expensive

BOG rate estimates in large tanks are empirical – charts provided by vendor

Complex scale-dependent process: hard to model or measure accurately

Cryogenic Boil-off Gas Test Facility

(a) Monitor and control system, (b) cryogenic thermostat, (c) Dewar of liquid nitrogen, and (d) BOG cell (which is inside the cryogenic thermostat during operation). Data acquisition & gas-handling manifold also shown.

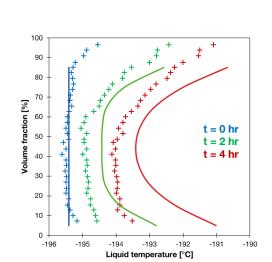
Temperatures ≥ -196 °C (77 K)

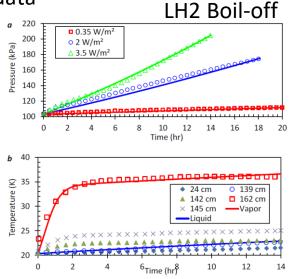
Pressures ≤ 10 atmospheres

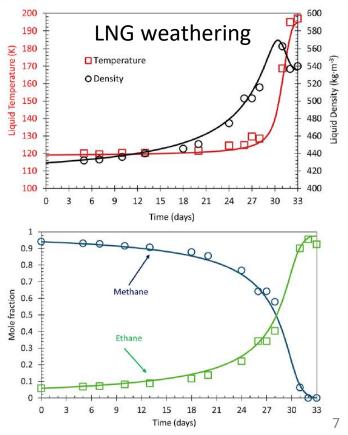
6.7 litre cell with variable heights& diameters possible

35 thermometers measure temperature profiles & liquid level

Excellent control of boundary temperature

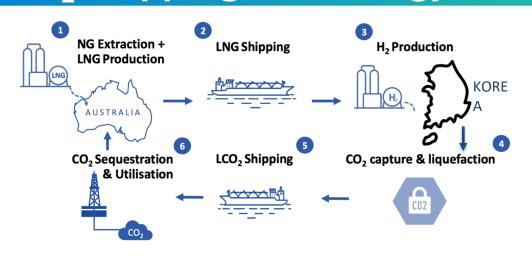

In-situ liquefaction and bunkering scenarios can be tested

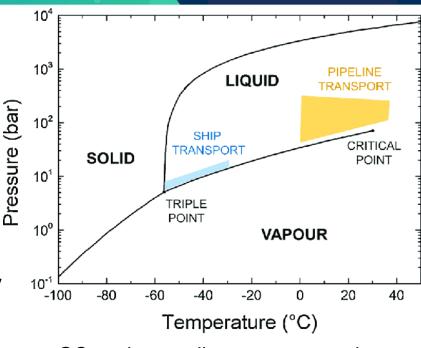

BoilFAST: Cryogenic Boil-off Simulator

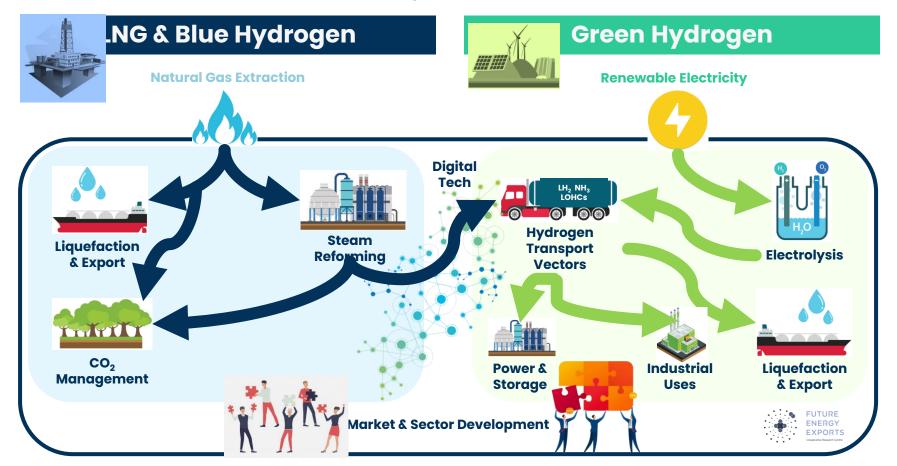


- Free simulation tool from <u>www.fenex.org.au/software/</u>
- Predict BOG generation from LNG, LH2, ammonia
- User sets tank design and heat transfer parameters
- Uses highly-accurate reference models for properties

Anchored to lab & industry data




New collaboration: Low (T, p) liquid CO₂ shipping technology


FEnEx CRC including UWA & Seoul National University now starting industry-funded project to

- 1) Understand boil-off & solidification fundamentals of industrial specification LCO₂ at -50 C
- 2) Develop demonstration project to move Low (T,p) technology beyond TRL 3.

CO₂ phase diagram. approximate operative ranges for transport Knoope et al., 2015

Thank

